个 人 简 历
教育经历
· 1998-9 - 2002-7 华东师范大学数学系,基础数学,学士学位
· 2004-9 - 2007-7 免费av
,基础数学,硕士学位
· 2012-9 - 2013-10 日本大阪市立大学数学系,基础数学,博士学位
(教育部海外学位学历认证编号:教留服认日[2013]06777号)
· 2017-9 - 2020-9 汕头大学数学系,基础数学,博士学位
工作经历
· 2002-7 - 2007-12 免费av
,助教
· 2008-1 - 2013-12 免费av
,讲师
· 2014-1 - 2023-12 免费av
,副教授
· 2024-1 – 至今 免费av
,教授
个人简介
朱剑峰,男,福建晋江籍,免费av
教授,硕士生导师,2013年10月获得日本大阪市立大学理学博士学位,2020年9月获得汕头大学理学博士学位。多次受邀出访日本、希腊、波兰、黑山共和国等,并作学术报告。具有较好的英语口语能力,2014年取得“免费av
全英文授课资格”,并承担国际学院的全英文教学,课程包括:《Calculus》、《Linear Algebra》、《Probability and Statistics》。和国内外同行保持密切联系并开展学术合作,研究兴趣包括:拟共形映射、调和映射、函数空间、算子理论等。已发表学术论文30余篇,部分成果发表在“Adv. Math.”、“Math. Ann.”、“J. Funct. Anal.”、“Math. Z.”、“J. Geom. Anal.”等国际著名数学杂志。主持国家自然科学基金面上项目1项,国家青年基金1项,福建省面上项目2项。指导研究生获得“2022年度福建省优秀硕士学位论文”。多个国际期刊特约审稿人,美国数学会评论员,厦门数学会理事。
科研项目
● 主持国家自然科学基金面上项目,45万,关于拟共形映射哈代空间理论和Hölder正则性的研究,执行年限:2023年1月-2026年12月,在研
● 主持国家自然科学基金青年基金项目,21万,关于调和映照的边界特征及其相关问题的研究, 执行年限:2016年1月-2018年12月,已结题
● 主持福建省面上基金项目,4万,几类偏微分方程解的拟共形性质及其算子理论的研究,执行年限:2021年11月-2024年11月,在研
● 主持福建省面上基金项目,3万,调和映照的拟共形延拓及相关的偏差估计,执行年限:2016年4月-2019年4月,已结题
● 参与国家自然科学基金面上项目,48万,复射影空间上调和拟共形映照的若干极值问题,执行年限:2020年1月-2023年12月,在研,排名第二。
近5年发表的论文(节选)
[1] Jinsong Liu and Jian-Feng Zhu*(朱剑峰), Riesz conjugate functions theorem for harmonic quasiconformal mappings, Adv. Math.434 (2023), Paper No. 109321.
[2] Jinsong Liu,Petar Melentijević, and Jian-Feng Zhu*(朱剑峰), Lp norm of truncated Riesz transform and an improved dimension-free Lp estimate for maximal Riesz transform, Math. Ann. 2023, DOI:10.1007/s00208-023-02736-1.
[3] David Kalaj, Petar Melentijević, and Jian-Feng Zhu *(朱剑峰), Lp-theory for Cauchy-transform on the un it disk, J. Funct. Anal. 2022, 282(4): 109337-35 pp
[4] Shaolin Chen*, Hidetaka Hamada, and Jian-Feng Zhu(朱剑峰), Composition operators on Bloch and Hardy type space, Math. Z. (2022) 301:3939–3957.
[5] Jian-Feng Zhu(朱剑峰)and David Kalaj* ; Norm estimates of the Cauchy transform and related operators, J. Funct. Anal. 2020, 279(9): 108726-25 pp
[6] Jian-Feng Zhu (朱剑峰), Norm estimates of the partial derivatives for harmonic mappings and harmo nic quasiregular mappings, J. Geom. Anal. 2021, 31(6): 5505-5525.
[7] Sh. Chen and J.-F. Zhu(朱剑峰), Schwarz type lemmas and a Landau-type theorem of some classes of complex-valued functions, Bull. des Sci. Math. 154 (2019), 36-63.
[8] D. Kalaj and J.-F. Zhu(朱剑峰), The existence of minimizers of energy for diffeomorphisms between two-dimensional annuli in 
 and
 and 
 , Nonlinear Anal.-Theor. 217 (2022), 112764, 16 pp.
, Nonlinear Anal.-Theor. 217 (2022), 112764, 16 pp.
[9] J.-F. Zhu(朱剑峰) and D. Kalaj, Neohookean deformations of annuli in the higher dimensional Euclidean space,Nonlinear Anal.-Theor. 189 (2019), 111575, 14 pp.
[10] J.-F. Zhu(朱剑峰) and A. Rasila,
 norm estimates of Cauchy transforms on the Dirichlet problem and their applications,J. Math. Anal. Appl. 502 (2021), 125255.
 norm estimates of Cauchy transforms on the Dirichlet problem and their applications,J. Math. Anal. Appl. 502 (2021), 125255.
[11] J. Huang, A. Rasila and J.-F. Zhu(朱剑峰), Lipschitz property with respect to pseudo-hyperbolic metric for harmonic Bloch mappings, Analysis Mathematica 48 (2022), 1069–1080.
[12] X.-J. Bai, J. Huang, and J.-F. Zhu(朱剑峰), The Schwarz lemma at the boundary for harmonic mappings having zero of order 
 , Bull. Malays. Math. Sci. Soc. 44 (2021), 827-838.
, Bull. Malays. Math. Sci. Soc. 44 (2021), 827-838.
[13] Xiao-Jin Bai and J.-F. Zhu(朱剑峰), Norm estimates for a class of operators related to the Bergman projection,Complex Var. Elliptic Equ. 67(2022), 1801–1816.
[14] J.-F. Zhu(朱剑峰), Schwarz-Pick type estimates for gradients of pluriharmonic mappings of the unit ball, Results Math. 74 (2019), 16 pp.
[15] D. Kalaj and J.-F. Zhu(朱剑峰), Schwarz Pick type inequalities for harmonic maps between Riemann surfaces, Complex Var. Elliptic Equ. 64 (2019), 1364-1375.
[16] M. R. Mohapatra, X. Wang, and J.-F. Zhu(朱剑峰), Boundary Schwarz lemma for solutions to nonhomogeneous biharmonic equations, Bull. Australian Math. Soc. 100 (2019), 470-478.
[17] D. Partyka, K. Sakan, and J.-F. Zhu(朱剑峰), Quasiconformal harmonic mappings with the convex holomorphic part, Ann. Acad. Sci. Fenn. Math. 43 (2018), 401-418.
[18] J. Huang and J.-F. Zhu(朱剑峰), Bi-Lipschitz property and distortion theorems for planar harmonic mappings with 
 -linearly connected holomorphic part, Bull. Korean Math. Soc. 52 (2018), 1419-1431.
-linearly connected holomorphic part, Bull. Korean Math. Soc. 52 (2018), 1419-1431.
[19] X. Wang and J.-F. Zhu(朱剑峰), Boundary Schwarz lemma for solutions to Poisson's equation, J. Math. Anal. Appl. 463 (2018), 623-633.
[20] J.-F. Zhu(朱剑峰), Schwarz lemma and boundary Schwarz lemma for pluriharmonic mappings, Filomat 32 (2018), 5385-5402.
奖 励
● 获2016年度厦门市引进重点人才
● 指导研究生获得“2022年度福建省优秀硕士学位论文”